Report

Domestic hot water technology transition to solar thermal systems: Barriers and opportunities in Maputo city, Mozambique Author: Célia Domingas Artur (PhD in Energy Science and Technology) Maputo December 2020

Abstract

Like other developing countries, Mozambique is also facing problems related to electricity shortages due to expanding access to electricity and consumption. Over the past 15 years, electricity demand increased by an average 9% annually [1]. Mozambique's electricity supplier is making efforts to build new power generation plants to meet the growing demand; however, it has been unsuccessful due to the shortage of financial resources [1].

The present report aims to analyse the barriers and opportunities for a wide implementation of solar thermal systems (STS) for domestic water heating, based on a field survey of the main technology barriers, as well as, on a socioeconomic assessment of the type of investment that best suits the specificities of the communities.

It is concluded that there are technical, economic and behavioural barriers to the wide implementation of STS, being the most prominent the lack of dissemination and the investment cost of the systems. Further, two scenarios of investment of the STS were analysed; one considering the Government as investor and another considering the end-user itself as investor. Results point that the replacement of electrical systems can be done through the introduction of STS with electrical backup in both technical and economic terms. Any investment scenario brings benefits to both the end-user and the electric sector. However, it is recommended that the government should create specific legislation for solar systems including legal incentives and consequently, support market deployment to make the systems more affordable to the communities. Additionally, there is a need of policies to encourage the implementation of solar systems in new buildings.

Contents

1. Introduction	1
2. Case study	3
3. Methodology	5
3.1. The survey topics	6
3.2. Determination of the Survey sample	7
3.2.1. Household Sample	7
3.2.2. Sellers sample	10
3.3. Data collection and analysis	11
4. Results	13
4.1. Characterization of household survey respondents	14
4.2. Barriers	15
4.2.1. Barriers and opportunities per urban area	18
4.2.2. Barriers according to the seller	22
4.3. Pointed solutions and opportunities to overcome partially or totally	
the barriers	23
4.3.1. Certified equipment	23
4.3.2. Dissemination	23
4.3.3. Legal incentives and support market deployment	23
4.3.4. Electricity tariff	24
4.3.5. STS in new buildings	24
5. Implementation scenarios	24
5.1. End-user as investor	27
5.2. Government as investor	27
6. STS and gender issues	28
7. Conclusions	29
8. Recommendations	30
Acknowledgements	30
References	31
Attachments	33

List of Figures

4
5
12
13
15
16
17
19
20
21
22
25

List of tables	
Table 1: Population and dimension of the grouped urban areas [17]	4
Table 2: Household survey topics (1st phase)	6
Table 3: Survey topics (2nd phase)	7
Table 4: Sample size for the survey	9
Table 5: Selected neighbourhoods and blocks	10
Table 6: Selected stories of STS	11
Table 7: Demographics characterization of respondents	14
Table 8: Thermosiphon system for the study [3]	26
Table 9: Household energy needs for DHW supply [3]	26
Table 10: Supply and selling cost of kWh of electricity from national grid	27
Table 11: Savings and payback period per technology [3]	27
Table 12: Savings to the end-user and the government when the	
end-user is 100% investor	28
Table 13: Savings to the government when the government is	
100% investor	28